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A

In this paper we propose two families of block ciphers, S and S, each
of which comes in a variety of widths and key sizes. While many lightweight
block ciphers exist, most were designed to perform well on a single platform
and were not meant to provide high performance across a range of devices. The
aim of S and S is to fill the need for secure, flexible, and analyzable
lightweight block ciphers. Each offers excellent performance on hardware and
software platforms, is flexible enough to admit a variety of implementations on
a given platform, and is amenable to analysis using existing techniques. Both
perform exceptionally well across the full spectrum of lightweight applications,
but S is tuned for optimal performance in hardware, and S for optimal
performance in software.

This paper is a product of the NSA Research Directorate, and the algorithms presented are free from any intellectual
property restrictions. This release does not constitute an endorsement of these algorithms for official use.
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1. I

Existing cryptographic algorithms were, for the most part, designed to meet
the needs of the desktop computing era. Such cryptography tends not to be
particularly well-suited to the emerging era of pervasive computing, in which
many highly constrained hardware- and software-based devices will need to
communicate wirelessly with one another. And security is important for many
of these devices: a hacker should not be able to take control of your insulin
pump or override the brakes in your car.

The relatively new field of lightweight cryptography addresses security issues for
highly constrained devices. A great deal of excellent work has already been
done in this area, much of it aimed specifically at developing block ciphers
suitable for lightweight cryptographic applications—the references at the end
of this paper provide just a small sample. The algorithms we present here
build upon that body of work. Our goal is that they provide the security that
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the cryptographic community expects, while also delivering the flexibility and
performance characteristics that developers require.

We would like to stress at this point that a block cipher does not provide
security by itself! Different applications will likely have very different security
requirements, and protocols must be developed in each specific instance to
achieve the desired level of security. But a block cipher is an extremely versatile
cryptographic primitive, and we fully expect that any lightweight protocol can
be based upon an appropriately-sized block cipher.

That being said, the obvious first question for developers of lightweight appli-
cations is “Why not build my protocols around AES?” Indeed, AES [DR02] has
been suggested for lightweight use, and given its stature, we believe it should be
used whenever appropriate. However, for the most constrained environments,
AES is not the right choice: in hardware, for example, the emerging consensus
in the academic literature is that area should not exceed 2000 gate equivalents
(see [JW05]), while the smallest available implementation of AES requires 2400∗

[MPL+11].

Among the block ciphers intended for use on constrained devices, some have
been designed specifically to perform well on dedicated Application-Specific
Integrated Circuits (ASICs), and thus can be realized by small circuits with
minimal power requirements. Others are meant to perform well on low-cost
microcontrollers with limited flash, SRAM, and/or power availability. Unfor-
tunately, design choices meant to optimize performance on one platform often
adversely affect performance on another.†

Here we propose two families of highly-optimized block ciphers, S and
S, that are flexible enough to provide excellent performance in both hard-
ware and software environments. To the best of our knowledge, each of S
and S outperforms both the best comparable hardware algorithms (in terms
of the area required to achieve a given throughput), and the best comparable
software algorithms (in terms of code size and memory usage). In addition,
both families consist of algorithms having a range of block and key sizes, each

∗The algorithms we discuss in this paper can be implemented in hardware and software
with roughly half the footprint of AES, and this greatly expands their range of application.

†These include the reliance on software-unfriendly bit permutations or bit-serial computa-
tions, and not-especially-hardware-friendly S-boxes.
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hardware software

size name area throughput flash SRAM throughput
(GE) (kbps) (bytes) (bytes) (kbps)

48/96 S 763 15.0 196 0 589
S 884 12.0 134 0 943
EPCBC 1008 12.1 [365] 0 [93]

64/80 T 1011 16.2 1304 414 472
P 1030 12.4 [487] 0 96
P 1043 14.8 – – –
K 1054 25.1 272 18 14
K 1478 23.6 766 18 168

64/96 S 838 17.8 274 0 540
S 984 14.5 182 0 888
K 1528 19.1 [766] [18] [134]

64/128 S 1000 16.7 282 0 515
S 1127 13.8 186 0 855
P 1334 12.1 – – –
P 1339 12.1 [487] [0] [96]

96/96 S 984 14.8 454 0 454
S 1134 13.8 276 0 866
EPCBC 1333 12.1 [730] 0 [93]

128/128 S 1317 22.9 732 0 342
S 1396 12.1 396 0 768
AES 2400 56.6 943 33 445

Table 1.1: Performance comparisons. Size is block size/key size; hardware refers
to an ASIC implementation, and software to an implementation on an 8-bit micro-
controller; clock speeds are 100 kHz (hardware) and 16 MHz (software). The best
performance for a given size is indicated in red, the second best in blue. Numbers
in brackets are our estimates; “–” means these values were unavailable at the time
of writing.
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of which admits a variety of implementations. The impact is that users will be
able to closely match their application requirements with their security needs,
without having to sacrifice performance.

S has been optimized for performance on hardware devices, and S
for performance in software. But we emphasize that both families perform
exceptionally well in both hardware and software, offering the flexibility across
platforms that will be required by future applications.

Table 1.1 shows a few significant hardware and software performance figures for
S, S, and some other prominent block ciphers. For readers with some
background in the field, much of the table will make sense without further
explanation. Far more detail can be found in Sections 5, 6, and 7. Briefly,
the data shown represent minimal-area hardware implementations achieving a
throughput of at least 12 kilobits per second (kbps) at 100 kHz, and for software
implementations minimizing what we call the balanced performance metric (see
Equation (1)).

The organization of the paper is as follows. Section 2 discusses issues in
lightweight block cipher design and introduces some of the choices we made
in designing S and S. The algorithms are specified in Sections 3 and 4.
Sections 5, 6, and 7 discuss our performance comparisons, and give fairly ex-
tensive hardware and software performance data. In the appendices, we briefly
touch on performance on 64-bit processors (Appendix A) and give test vectors
for S (Appendix B) and S (Appendix C).

2. L B C D C

The term lightweight is used broadly to mean that an algorithm is suitable for use
on some constrained platform. But the features that make an algorithm excel on
an 8-bit microcontroller, say, do not necessarily imply that it can be realized by
an extremely small circuit. We would prefer to have a less platform-dependent
notion of what is meant by lightweight, and so some general discussion is in
order regarding our goals.

First, we make no attempt to optimize for a specific application. We prefer to
make application-independent design choices that ensure good performance
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on both ASICs and 8-bit microcontrollers, with the idea that good performance
in these environments will carry over to other important platforms as well—
FPGAs, 4- and 16-bit microcontrollers, 32-bit processors, and so on.

The principal aim is to provide algorithms that (1) have very small hardware
implementations, and at the same time (2) have software implementations on
small, low-power microcontrollers, with minimal flash and SRAM usage.

Our desire for low-area hardware designs means that we favor simple, low-
complexity round functions, even if that means many rounds are required.
Fortunately, for many lightweight applications, throughput is not the top pri-
ority. For the sake of comparison, however, it makes sense to set some minimal
throughput requirement for low-frequency hardware implementations. There
is no universal convention to be followed: based on values we’ve seen in the
literature (see [CDK09], for instance), and as we have noted above, we have
chosen to limit the direct comparisons shown in Table 1.1 to implementations
of our algorithms that achieve a throughput of at least 12 kilobits per second
(kbps) at 100 kHz.

For a lightweight algorithm to be as useful as possible, it should be flexible
enough not just to be implemented efficiently on a variety of platforms, but also
to allow for a variety of implementations on a single platform. For hardware
applications, this means that it should be possible to take advantage of the
available real estate. For extremely constrained hardware environments, very
low-area implementations should be achievable, but if constraints are not so
tight, one should be able to take advantage of this fact with larger-area, higher-
throughput implementations. For software applications, very small flash and
SRAM usage should be attainable, but high-throughput, low-energy implemen-
tations should be achievable as well.

Existing lightweight algorithms tend to use components that limit their flexi-
bility. One important consideration is the extent to which an algorithm can be
serialized in hardware. An implementation that updates a single bit at a time is
said to be fully serialized, or bit-serial, while one that updates the entire block
during each cycle is said to be unserialized, or iterated. Some algorithms are
inherently bit-serial, making for small, though not necessarily fast, hardware
implementations. But increasing the throughput of such an algorithm can be
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unnecessarily costly (in terms of chip area). On the other hand, many algo-
rithms are S-box based, precluding the possibility of efficient serialization at a
level below the width of the S-box. This is reflected in the AES row of Table 1.1,
where we see a throughput value much higher than 12 kbps, since AES is built
from 8-bit S-boxes. Algorithms that can be efficiently serialized at any level
provide better optimization opportunities.

Flexibility extends in another direction as well: since applications and devices
vary, a variety of block and key sizes is useful. For instance, block sizes of
64 and 128 bits are prevalent in the world of desktop computing, but atypical
block sizes of 48 or 96 bits are optimal for some electronic product code (EPC)
applications. Key sizes, on the other hand, are related to the desired level of
security: a very low-cost device may achieve adequate security using just 64
bits of key, while more sensitive applications (running on suitably higher-cost
devices) may require as many as 256 bits of key.

In order to provide this flexibility, we’ve designed S and S to be block
cipher families: Each supports block sizes of 32, 48, 64, 96, and 128 bits, with up
to three key sizes to go along with each block size. Each family provides ten
algorithms in all. Table 2.1 lists the different block and key sizes, in bits, for
S and S.

block size key sizes

32 64

48 72, 96

64 96, 128

96 96, 144

128 128, 192, 256

Table 2.1: S and S parameters.

We need to say a word about security, which is of course the primary goal of
cryptography. In addition to meeting performance objectives, it is expected that
a cryptographic algorithm have a level of security that matches its key size. Since
confidence in the security of an algorithm increases as it is analyzed, a designer
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should strive to create algorithms that are amenable to current cryptanalytic
techniques. S and S have been subjected to a fair amount of analysis,
but nowhere near the amount brought to bear on algorithms such as DES and
AES. Care must also be taken to use the appropriate block and key sizes to
match the required level of security for the application.

But the fact of the matter is that our algorithms have simple round functions
that invite analysis, and we are hopeful that this will entice the cryptographic
community to expend some effort studying them.

While our intent is that S and Sprovide the advertised level of security,
a large security margin is a luxury that we can’t always afford when resources
are scarce. Our approach has been aggressive: we have built in what we believe
is a sufficient security margin, but not an excessive one, and certainly one which
is tighter than might be supplied in a more traditional setting.

This brings up an important issue, and one we would like to see discussed
further: What sorts of cryptanalytic adversaries should be considered in the
world of lightweight cryptography? Does it make sense to allow access to the
complete set of matched inputs and outputs for an algorithm with a 128-bit block
size? One might argue that the amount of data encrypted by a single lightweight
device during its functional lifetime will be tiny, and data to which an adversary
has access will likely remain small when this tiny quantity is summed over all
devices using a common key. In addition, for devices that can’t be secured
physically, practical (side-channel, reverse engineering) attacks will likely take
precedence over cryptanalytic ones. The point is that there is a price to be
paid (with every encryption) for blocking purely theoretical weaknesses, and it
makes sense to think about what price is justified.

Since there is not yet a fully crystallized point of view on this issue, we have
proceeded in a more-or-less standard fashion. S and S have been
designed to provide security against traditional adversaries who can adaptively
encrypt and decrypt large amounts of data. We concede that (as is the case
with other algorithms) there will be what amount to highly optimized ways to
exhaust the key that reduce the cost of a naive exhaust by a small factor. We
have also made a reasonable effort to provide security against adversaries who
can flip key bits, and our aim is that there should be no related-key attacks. But
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we have made no effort to guard against attacks in the open-key model, and
S and S have not been evaluated for use as hashes.

3. T S F  B C

The S block cipher with an n-bit word (and hence a 2n-bit block) is denoted
S2n, where n is required to be 16, 24, 32, 48, or 64. S2n with an m-word
(mn-bit) key will be referred to as S2n/mn. For example, S64/128 refers
to the version of S acting on 64-bit plaintext blocks and using a 128-bit key.

Each instance of S uses the familiar Feistel rule of motion. The algorithm
is engineered to be extremely small in hardware and easy to serialize at various
levels, but care was taken so as not to sacrifice software performance.

3.1. R F

S2n encryption and decryption make use of the following operations on
n-bit words:

• bitwise XOR, ⊕,

• bitwise AND, &, and

• left circular shift, S j, by j bits.

For k ∈ GF(2)n, the key-dependent S2n round function is the two-stage
Feistel map Rk : GF(2)n

×GF(2)n
→ GF(2)n

×GF(2)n defined by

Rk(x, y) = (y ⊕ f (x) ⊕ k, x),

where f (x) = (Sx & S8x) ⊕ S2x and k is the round key. The inverse of the round
function, used for decryption, is

R−1
k (x, y) = (y, x ⊕ f (y) ⊕ k).

The S key schedules take a key and from it generate a sequence of T key
words k0, . . . , kT−1, where T is the number of rounds. The encryption map, then,
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Figure 3.1: Feistel stepping of the S round function.

is the composition RkT−1 ◦ · · · ◦Rk1 ◦Rk0 , read from right to left. Figure 3.1 shows
the effect of the round function Rki on the two words of subcipher (xi+1, xi) at the
ith step of this process.

Table 3.1 makes explicit our parameter choices for all versions of S.

Observe that S includes no plaintext and ciphertext whitening steps, as
inclusion of such operations can adversely affect circuit size. Consequently the
first and last rounds do nothing cryptographically, other than acting to bring
in the first and last round keys. There are various other locations on Figure 3.1
where key could have been included instead, some of which don’t have this
issue, but none without drawbacks. Similar comments apply to S.

3.2. K S

Note that apart from the round key, all rounds of S are exactly the same,
and the operations are perfectly symmetric with respect to the circular shift
map on n-bit words. The S key schedules employ a sequence of 1-bit
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block key word key const rounds
size 2n size mn size n words m seq T

32 64 16 4 z0 32

48 72 24 3 z0 36
96 4 z1 36

64 96 32 3 z2 42
128 4 z3 44

96 96 48 2 z2 52
144 3 z3 54

128 128 64 2 z2 68
192 3 z3 69
256 4 z4 72

Table 3.1: S parameters.

round constants specifically for the purpose of eliminating slide properties and
circular shift symmetries. In fact, we provide some cryptographic separation
between different versions of S having the same block size by defining five
such sequences : z0, . . . , z4. Each of these sequences is defined in terms of one of
the following period 31 sequences:

u = u0u1u2 . . . = 1111101000100101011000011100110 . . . ,

v = v0v1v2 . . . = 1000111011111001001100001011010 . . . ,

w = w0w1w2 . . .= 1000010010110011111000110111010 . . . .

The first two sequences are simply z0 = u and z1 = v. The remaining three, z2,
z3, and z4, have period 62 and are formed by computing the bitwise XOR of the
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period 2 sequence t = t0t1t2 . . . = 01010101 . . . with u, v, and w, respectively:

z2 = (z2)0(z2)1(z2)2 . . . = 1010111101110000001101001001100

0101000010001111110010110110011 . . . ,

z3 = (z3)0(z3)1(z3)2 . . . = 1101101110101100011001011110000

0010010001010011100110100001111 . . . ,

z4 = (z4)0(z4)1(z4)2 . . . = 1101000111100110101101100010000

0010111000011001010010011101111 . . . ,

where (zi) j is the jth bit of zi.

The sequences u, v, and w can be generated as follows: Define 5× 5 matrices U,
V, and W over GF(2) by

U =



0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
1 0 0 0 1


, V =



0 1 1 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
1 0 0 0 0


, W =



0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1
1 0 0 0 0


.

The ith element of each sequence is then obtained by initializing a 5-bit linear
feedback shift register to 00001, stepping i times using the corresponding ma-
trix, and extracting the right-hand bit. Thus (u)i = (0, 0, 0, 0, 1) Ui (0, 0, 0, 0, 1)t.

Let c = 2n
− 4 = 0xff · · · fc. For S2n with m key words (km−1, . . . , k1, k0) and

constant sequence z j, round keys are generated by

ki+m =


c ⊕ (z j)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2,

c ⊕ (z j)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3,

c ⊕ (z j)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), if m = 4,

for 0 ≤ i < T − m. The key schedules are represented in Figure 3.2, and the
version-dependent choice of constant sequence z j is made explicit in Table 3.1.
Note that key words k0 to km−1 are used as the first m round keys; they are loaded
into the shift registers with k0 on the right and km−1 on the left.

Pseudocode for all versions of S is shown in Figure 3.3.
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ki+1 ki

S−3

S−1

c ⊕ (z j)i n

ki+2 ki+1 ki

S−3

S−1

c ⊕ (z j)i n

ki+3 ki+2 ki+1 ki

S−3

S−1

c ⊕ (z j)i n

Figure 3.2: The S two, three, and four-word key expansions.
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-------------------------- definitions --------------------------

n = word size (16, 24, 32, 48, or 64)

m = number of key words (must be 4 if n = 16,

3 or 4 if n = 24 or 32,

2 or 3 if n = 48,

2, 3, or 4 if n = 64)

z = [11111010001001010110000111001101111101000100101011000011100110,

10001110111110010011000010110101000111011111001001100001011010,

10101111011100000011010010011000101000010001111110010110110011,

11011011101011000110010111100000010010001010011100110100001111,

11010001111001101011011000100000010111000011001010010011101111]

(T, j) = (32,0) if n = 16

= (36,0) or (36,1) if n = 24, m = 3 or 4

= (42,2) or (44,3) if n = 32, m = 3 or 4

= (52,2) or (54,3) if n = 48, m = 2 or 3

= (68,2), (69,3), or (72,4) if n = 64, m = 2, 3, or 4

x,y = plaintext words

k[m-1]..k[0] = key words

------------------------- key expansion -------------------------

for i = m..T-1

tmp ← S−3 k[i-1]

if (m = 4) tmp ← tmp ⊕ k[i-3]

tmp ← tmp ⊕ S−1tmp

k[i] ← ~k[i-m] ⊕ tmp ⊕ z[j][(i-m) mod 62] ⊕ 3

end for

-------------------------- encryption ---------------------------

for i = 0..T-1

tmp ← x

x ← y ⊕ (Sx & S8x) ⊕ S2x ⊕ k[i]

y ← tmp

end for

Figure 3.3: S pseudocode.
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4. T S F  B C

The ten instances of S have been designed to provide excellent performance
in both hardware and software, but have been optimized for performance on
microcontrollers. Our notation for the different variants of S is entirely
analogous to that used for S. For example, S96/144 refers to the S
block cipher with block size 96 bits and key size 144 bits.

4.1. R F

The S2n encryption maps make use of the following operations on n-bit
words:

• bitwise XOR, ⊕,

• addition modulo 2n, +, and

• left and right circular shifts, S j and S− j, respectively, by j bits.

For k ∈ GF(2)n, the key-dependent S2n round function is the map Rk : GF(2)n
×

GF(2)n
→ GF(2)n

×GF(2)n defined by

Rk(x, y) = ((S−αx + y) ⊕ k, Sβy ⊕ (S−αx + y) ⊕ k),

with rotation amounts α = 7 and β = 2 if n = 16 (block size = 32) and α = 8 and
β = 3 otherwise. The S round functions are similar to the mixing functions
found in the T [FLS+10] block cipher.∗

The inverse of the round function, necessary for decryption, uses modular
subtraction instead of modular addition, and is given by

R−1
k (x, y) = (Sα((x ⊕ k) − S−β(x ⊕ y)), S−β(x ⊕ y)).

Parameters for all versions of S are specified in Table 4.1.

∗Sdiffers from Threefish in various ways, e.g., it uses fixed vs. round-dependent rotation
amounts, employs two rotations per round vs. one for the mixing functions, adds key using
XOR and does not use word permutations. These and other important differences make S
significantly lighter and faster than Threefish in both hardware and software.
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block key word key rot rot rounds
size 2n size mn size n words m α β T

32 64 16 4 7 2 22

48 72 24 3 8 3 22
96 4 23

64 96 32 3 8 3 26
128 4 27

96 96 48 2 8 3 28
144 3 29

128 128 64 2 8 3 32
192 3 33
256 4 34

Table 4.1: S parameters.

The S key schedules take a key and from it generate a sequence of T key
words k0, . . . , kT−1, where T is the number of rounds. The effect of the single
round function Rki is shown in Figure 4.1. Encryption is then the composition
RkT−1 ◦ · · · ◦ Rk1 ◦ Rk0 , read from right to left.

Note that S can be realized as the composition of two Feistel-like maps with
respect to two different types of addition, namely,

(x, y) 7→ (y, (S−αx + y) ⊕ k) and (x, y) 7→ (y,Sβx ⊕ y).

This decomposition is pictured in Figure 4.2.
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x2i+1 x2i

S−α

+

Sβki

x2i+3 x2i+2

n

Figure 4.1: S round function; (x2i+1, x2i) denotes the subcipher after i steps of
encryption.

x y

S−α

+

k

n

x y

Sβ n

Figure 4.2: S round function decomposed into Feistel-like steps.

16



4.2. K S

The S key schedules use the round function to generate round keys ki. Let
K be a key for a S2n block cipher. We can write K = (`m−2, . . . , `0, k0), where
`i, k0 ∈ GF(2)n, for a value of m in {2, 3, 4}. Sequences ki and `i are defined by

`i+m−1 = (ki + S−α`i) ⊕ i and

ki+1 = Sβki ⊕ `i+m−1.

The value ki is the ith round key, for 0 ≤ i < T. See Figure 4.3.

`i+m−2 . . . `i ki

Ri n

Figure 4.3: S key expansion, where Ri is the S round function with i acting
as round key.

Pseudocode for all versions of S is shown in Figure 4.4.
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--------------------------- definitions ----------------------------

n = word size (16, 24, 32, 48, or 64)

m = number of key words (must be 4 if n = 16,

3 or 4 if n = 24 or 32,

2 or 3 if n = 48,

2 or 3 or 4 if n = 64)

T = number = 22 if n = 16

of rounds = 22 or 23 if n = 24, m = 3 or 4

= 26 or 27 if n = 32, m = 3 or 4

= 28 or 29 if n = 48, m = 2 or 3

= 32, 33, or 34 if n = 64, m = 2, 3, or 4

(α, β) = (7,2) if n = 16

(8,3) otherwise

x,y = plaintext words

`[m-2]..`[0],k[0] = key words

--------------------------- key expansion --------------------------

for i = 0..T-2

`[i+m-1] ← (k[i] + S−α `[i]) ⊕ i

k[i+1] ← Sβ k[i] ⊕ `[i+m-1]

end for

---------------------------- encryption ----------------------------

for i = 0..T-1

x ← (S−αx + y) ⊕ k[i]

y ← Sβy ⊕ x

end for

Figure 4.4: S pseudocode.
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5. P C

In this section we discuss the performance of S and S and fill in
the details regarding the comparisons made in Table 1.1 with AES [DR02],
EPCBC [YKPH11], K [CDK09], K [GNL11], P [SIH+11], P
[BKL+07], and T [SMMK].

We have restricted our comparisons exclusively to block ciphers, as block ci-
phers are extremely flexible cryptographic primitives with a well-developed
cryptanalytic theory. Consequently, we don’t consider other interesting light-
weight designs like H-2 [ESS11], G [HJMM08], T [CP05],
and S20 [Ber08].

It is important to note the difficulties inherent in the sort of comparison we’re do-
ing. Different authors implement their algorithms under differing assumptions:
various cell libraries are used for hardware implementations, and a variety of
assumptions are made for software implementations. In addition, it’s not al-
ways clear what a particular author means, for example, by code size (is the
decryption algorithm implemented or not?) or gate count (is the key schedule
included?). All of this can make attempts at a fair comparison problematic. That
said, we believe the performance advantage of our algorithms cannot fully be
explained by such discrepancies.

In this paper we strive to make equitable comparisons, and to provide all
the relevant details about our performance metrics and our implementation
platforms. We begin by discussing the platforms a bit further.

The principal hardware resources are circuit area and power. Area is measured
in gate equivalents; a gate equivalent (GE), which depends on a particular
cell library, is the physical area required for the smallest available two-input
NAND gate. Our results were generated using an ARM standard cell library for
the IBM 8RF (0.13 micron) ASIC process. The areas of some basic gates in this
library are as follows: NOT 0.75, NAND 1.00, AND 1.25, OR 1.25, XOR 2.00, XNOR 2.00,
2-1 MUX 2.25, D flip-flop 4.25, 1-bit full adder 5.75, scan flip-flop 6.25.∗

∗The existence of a smaller D flip-flop in this library than that found in libraries used by
some authors—4.25 vs. 4.67—improves our numbers somewhat, but this does not fully explain
our area advantages. We note also that our scan flip-flop is larger—6.25 vs. 6.0.
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Areas given for our algorithms are for complete implementations: we include the
flip-flops to store the state and key, logic to implement the encryption algorithm
and key schedule, control logic to manage the encryption, and logic to allow
the plaintext to be loaded and ciphertext to be read out. We have not, however,
included an implementation of the decryption algorithm in any of our area
figures. This is consistent with other authors’ work: for extremely lightweight
applications one would want to use a block cipher in an encrypt-only mode.

Our current hardware designs have not proceeded past the synthesis stage, so
reliable power information is not available. For this reason, we report only area
figures. In addition, power consumption is strongly tied to the feature size,
clock speed, etc., and this makes comparisons especially difficult. However, we
expect that S and S are very amenable to low-power and low-energy
implementations.

We now turn our attention to Table 1.1, noting first the one slight mismatch in
key sizes in the data presented there: neither S nor S has a variant
that uses an 80-bit key. In an attempt to draw the fairest comparison, we have
lumped algorithms of size 64/80 together in the table with our algorithms of
size 64/96.

The hardware area and hardware throughput columns of the table compare S-
 and S with some of the best performing block ciphers available for
lightweight hardware applications. The data for P and EPCBC is found
in [YKPH11], for P in [SIH+11], for K in [CDK09], for T in
[SMMK], for K in [GNL11], and for AES in [MPL+11].

Two notable omissions from the table are PRINT [KLPR10] and K
[CDK09], lightweight block ciphers that also achieve very low-area hardware
implementations. These algorithms specifically target application spaces where
there is never a need to update keys, and take advantage of this fact by hard-
wiring a fixed key into the circuit. Because no flip-flops are required to store
key bits, these algorithms realize a significant savings in area. Our algorithms,
on the other hand, are meant to fill a much broader application space.

We now turn to software applications. In the lightweight application space,
we expect our algorithms to be implemented on inexpensive microcontrollers
with very limited memory resources. Atmel’s ATtiny45 8-bit microcontroller,

20



for instance, has just 4 kB of flash and 256 bytes of SRAM. In addition, these
microcontrollers often run on battery power, and cryptographic components
require minimal energy per bit encrypted in the interest of extending battery
life.

For the purposes of comparison, we define the balanced performance metric∗ for a
software implementation to be

(1)
throughput

flash + 16 · SRAM
.

A balanced implementation is one which scores well amongst a variety of im-
plementations with respect to the balanced performance metric. The table
compares balanced implementations of S, S, and various well-known
algorithms.

For algorithms other than S and S, we used the implementation with
maximal balanced performance metric amongst those we could find in the lit-
erature. The software data for P is derived from [EKP+07]; for K,
K, and AES from [EGG+12]; and for T from [SMMK]. We note that
the implementations given in some of these papers include the code for both
the encryption and decryption algorithms. Since our S and S code
provides encrypt capability only (which is reasonable for lightweight applica-
tions), we have subtracted the size of the decryption code† from the numbers
reported by those authors to obtain the numbers in our table.

Alternatively, we could have included the decryption algorithms in our imple-
mentations. For S, naive implementations would have required another
100 bytes or so of flash, but by exploiting the similarity between the encryp-
tion and decryption algorithms we could reduce this number significantly. For
S, the cost is negligible since the decryption algorithm is the encryption
algorithm, up to swaps of words and reordering of round keys.

∗This metric is related to that used in [REP07], but we have assigned a higher weight
to SRAM than to flash. The factor of 16 reflects the relative amount of SRAM to flash in
the ATtiny45 microcontroller: Implementations which use a lot of SRAM are, appropriately,
penalized.

†This was determined by examining assembly code whenever available. When the code
was not available, we halved the indicated flash usage as a reasonable estimate.
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We note that the best balanced implementations of our algorithms were in fact
those that required no SRAM. For these, code implementing the encryption
algorithm is stored in flash, and the key is pre-expanded and also stored in
flash; this obviates the need to include code for the key schedule and allows for
high-throughput/low-energy encryption. This contrasts with the way in which
some of the other algorithms handle the key: generally they include code for
the key schedule, and sometimes generate round keys on the fly.

All of our software implementations were coded in assembly on an Atmel
ATmega128 8-bit microcontroller running at 16 MHz. Distinct implementations
were done for high throughput (low energy), low flash usage, and low SRAM
usage. Results are presented in Section 7.

We conclude by highlighting a couple of comparisons from Table 1.1 between
our algorithms and two other prominent algorithms.

• P-80 is a leading hardware-oriented lightweight block cipher, with
an implementation requiring just 1030 GE and achieving throughput of
12.4 kilobits per second at 100 kHz. S64/96 and S64/96 (which
provide 16 added bits of security) achieve even higher throughput at areas
of just 838 and 984 GE, respectively. More importantly, our algorithms also
have excellent software performance, and this is something that P
was not designed to offer: S64/96 and S64/96 have about 10 and
25 times better balanced performance, respectively, than P-80.

• AES is one of the best existing block ciphers for applications running on
8-bit microcontrollers. This makes it a fine choice for many lightweight
software applications. But for extremely constrained applications where
it is no longer viable, S128/128 and S128/128 can fill the void.
Similarly, in hardware, if AES at 2400 GE is simply not an option, S-
128/128 and S128/128 can be made to fit in about half the area
(see Table 6.1).

Perhaps most significantly, lightweight applications typically do not re-
quire a 128-bit block cipher: a 64-bit block cipher may be perfectly ade-
quate. This consideration makes the comparison of our algorithms with
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128-bit algorithms like AES (which offers no 64-bit size) even more com-
pelling. S64/128 and S64/128 have significantly higher balanced
performance, and have minimal hardware requirements which fall below
1000 GE.

6. H P

This section presents detailed information regarding our ASIC implementations
of S and S. The algorithms were implemented in VHDL and synthe-
sized using Synopsys Design Compiler 11.09-SP4 to target the ARM SAGE-X
v2.0 standard cell library for IBM’s 8RF 130nm (CMR8SF-LPVT) process. Typ-
ical DC supply voltages for the process are 1.2 V. All throughput values given
in this section assume a clock speed of 100 kHz.

Of particular interest are fully serialized implementations, for which nearly
all of the chip area is dedicated to holding the words of subcipher and key.
Table 6.1 presents our data for such area-minimizing implementations. We note
that throughput for these implementations is necessarily low, and typically well
below the 12 kbps threshold required for inclusion in Table 1.1. We also note that
fully serial implementations don’t always make a lot of sense, as the marginal
cost in area to double or even quadruple the throughput is quite small.∗

Table 6.2 gives a more complete set of hardware data for S and S,
corresponding to various levels of serialization. The smallest area obtained
for each block size represents the fully serialized implementation, where a
single bit of each word is updated during each clock cycle. Subsequent lines
are for implementations that process larger divisors of the word size. The
largest area implementation listed for each block size corresponds to an iterated
implementation, which carries out a complete round in a single cycle. Though
other levels of serialization are certainly possible, this table should serve to
demonstrate the flexibility of our algorithms in hardware.

∗For S, updating two bits at a time instead of one doubles the throughput while
requiring an average of just 9 additional gate equivalents; quadrupling the throughput by
updating four bits at a time costs just 33 GE. The corresponding numbers for S are 59 to
double and 126 to quadruple the throughput.
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size name area throughput
(GE) (kbps)

32/64 S 523 5.6
S 580 4.2

48/72 S 631 5.1
S 693 4.3

48/96 S 739 5.0
S 794 4.0

64/96 S 809 4.4
S 860 3.6

64/128 S 958 4.2
S 996 3.4

96/96 S 955 3.7
S 1012 3.4

96/144 S 1160 3.5
S 1217 3.3

128/128 S 1234 2.9
S 1280 3.0

128/192 S 1508 2.8
S 1566 2.9

128/256 S 1782 2.6
S 1840 2.8

Table 6.1: Hardware performance: area-minimizing implementations.

We note that in Table 6.2 it appears that S peaks at a higher throughput
than S. This is an artifact of our choice to show the data for updating at
most n bits per clock cycle for S2n and S2n. It’s not hard to do an
implementation of S64 that updates, say, 40 bits at a time, or 64 bits at a
time, with the associated increases in area and throughput. But we have not
included a separate table for high-throughput hardware implementations like

24



this, because these implementations have relatively large area, and, as such,
fall outside the scope of this paper. In particular, if throughput per unit area
is the measure of interest, then optimal implementations are not shown in the
table—they would involve updating more than n bits per clock cycle.

A further note on throughput: it’s natural to count only those cycles required
for the encryption process. However, we believe that the throughput values
we present will be of most interest to implementers considering applications
that require the encryption of only a small number of blocks. Consequently, we
have included cycles for loading plaintext and key in a manner consistent with
our low-area implementation. In every case it’s possible to make the loading
proceed more quickly, thereby raising throughput a little, at a small cost in
area. We have not included any cycles for sending the resulting ciphertext
off chip, since we make the assumption that this can be done more-or-less
instantaneously or, at worst, simultaneously with the task of reading new data.

Table 6.2: Hardware performance for S and S.

area throughput area throughput
algorithm (GE) (kbps) algorithm (GE) (kbps)

S32/64 523 5.6 S32/64 580 4.2
535 11.1 642 8.3
566 22.2 708 16.7
627 44.4 822 33.3
722 88.9 850 123.1

S48/72 631 5.1 S48/72 693 4.3
639 10.3 752 8.5
648 15.4 777 12.8
662 20.5 821 17.0
683 30.8 848 25.5
714 41.0 963 34.0
765 61.5 1040 51.1
918 123.1 1152 192.0

Continued on next page
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algorithm area throughput algorithm area throughput

S48/96 739 5.0 S48/96 794 4.0
750 10.0 857 8.0
763 15.0 884 12.0
781 20.0 932 16.0
804 30.0 961 24.0
839 40.0 1081 32.0
898 60.0 1167 48.0

1062 120.0 1254 177.8

S64/96 809 4.4 S64/96 860 3.6
815 8.9 918 7.3
838 17.8 984 14.5
891 35.6 1095 29.1

1004 71.1 1338 58.2
1216 142.2 1522 220.7

S64/128 958 4.2 S64/128 996 3.4
968 8.3 1058 6.9

1000 16.7 1127 13.8
1057 33.3 1247 27.6
1185 66.7 1506 55.2
1417 133.3 1658 206.5

S96/96 955 3.7 S96/96 1012 3.4
965 7.4 1067 6.9
971 11.1 1089 10.3
984 14.8 1134 13.8

1007 22.2 1157 20.7
1037 29.6 1267 27.6
1088 44.4 1328 41.4
1151 59.3 1514 55.2
1263 88.9 1673 82.8
1580 177.8 2058 320.0

Continued on next page
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algorithm area throughput algorithm area throughput

S96/144 1160 3.5 S96/144 1217 3.3
1169 7.0 1269 6.6
1175 10.5 1297 9.8
1189 14.0 1345 13.1
1211 21.0 1371 19.7
1242 28.1 1485 26.2
1292 42.1 1558 39.3
1354 56.1 1751 52.5
1467 84.2 1928 78.7
1790 168.4 2262 300.0

S128/128 1234 2.9 S128/128 1280 3.0
1242 5.7 1338 6.1
1263 11.4 1396 12.1
1317 22.9 1488 24.2
1430 45.7 1711 48.5
1665 91.4 2179 97.0
2090 182.9 2727 376.5

S128/192 1508 2.8 S128/192 1566 2.9
1514 5.6 1627 5.8
1536 11.1 1687 11.6
1587 22.2 1797 23.2
1700 44.4 2038 46.4
1937 88.9 2536 92.8
2378 177.8 3012 355.6

S128/256 1782 2.6 S128/256 1840 2.8
1792 5.3 1901 5.6
1823 10.5 1967 11.1
1883 21.1 2087 22.2
2010 42.1 2341 44.4
2272 84.2 2872 88.9
2776 168.4 3284 336.8
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7. S P: 8-M

Generally speaking, we expect our algorithms to have exceptional performance
on 4-, 8-, 16-, and 32-bit microcontrollers. For the sake of comparison, however,
we have chosen to report data only for 8-bit implementations of S and
S, since most lightweight implementations reported in the literature have
been on such platforms. In particular, we implemented our algorithms on the
Atmel ATmega128, a low-power device with 128K bytes of programmable flash
memory, 4K bytes of SRAM, and 32 8-bit general purpose registers.

Tables 7.1, 7.2, and 7.3 show results for high-throughput, low-SRAM, and low-
flash implementations of S and S. In most cases we don’t optimize
the parameter in question, because doing so tends to have a deleterious effect
on the other parameters. For example, if the cost of decreasing the code size
by a few bytes is to reduce throughput by 50%, then we forgo the code-size
reduction. Similarly, we don’t report data for an implementation that achieves
1% increase in throughput if the consequence is to double the code size.

We do not give throughput directly in these tables, as we did in Table 1.1.
Instead, we show the encryption cost in cycles per byte, i.e., the number of
cycles required per byte of ciphertext, as this is the common metric used in the
literature for software implementations.

We now provide a little more detail about what is shown in each of the three
tables. Among the choices we have that give rise to varying implementations
are the following: (1) Is the code fully or partially unrolled, or is just one round
implemented? (2) Is the key schedule implemented and the code stored in flash,
or are the round keys simply assumed to be present in flash? (3) Are common
functions done via function calls or via in-line code?

Table 7.1 shows results for high-throughput implementations of the algorithms.
High throughput on a microcontroller equates to low energy, so such imple-
mentations are of interest when battery life is at a premium.

Maximal throughput is attained by fully unrolling code in order to eliminate
all loop overhead. This, however, can lead to very large programs, and most of
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the performance gains achievable by fully unrolling can be achieved by partial
unrolling. Table 7.1 shows the minimal code-size results whose throughput
is no more than 3% worse than the maximal throughput versions. Someone
who really cares about this 2–3% can get it back, but with a significant code size
penalty.

With regard to throughput, we note that the fastest reported software imple-
mentation of AES-128 available on an Atmel 8-bit microcontroller has a cost of
125 cycles/byte, and uses 1912 bytes of flash and 432 bytes of SRAM [BOSC10].
For a slight decrease in speed, the same implementers offer a more balanced
implementation with a cost of 135 cycles/byte, using 1912 bytes of flash and 176
bytes of SRAM. Our high-speed S128/128 implementation has comparable
throughput, at 139 cycles/byte, but uses only 388 bytes of flash and 256 bytes of
SRAM.

If one doesn’t require a full 128-bit cipher, then S64/128 could be considered.
One implementation of S64/128 encrypts at 120 cycles/byte, and when
compared to the fastest implementation of AES-128 mentioned above, uses less
than a sixth of the flash (284 bytes) and a quarter of the SRAM (108 bytes).∗

In addition, the SPECK implementations are straightforward, and this tends
not to be the case for high-speed AES implementations.

Table 7.2 shows results for low-SRAM implementations of the algorithms. As
it always is, code for the encryption algorithm is stored in flash. But here the
key schedule is not implemented; instead, key is assumed to have been pre-
expanded and round keys are stored in flash. Here we must include the time
to load the key from flash into registers as part of the encryption cost.

Table 7.3 shows results for low-flash (i.e., low code-size) implementations of
the algorithms. In most cases we also store the key schedule code in flash,
in addition to the encryption code.† We then expand the key and load it into
SRAM, and so the reported SRAM usage is the amount of storage required to
hold all the round keys (but in some cases one or two more words are necessary).

∗This implementation is essentially the one cited in Table 7.1, but with three rounds unrolled
instead of six for the value shown in the table.

†This convention does not always produce minimal flash implementations—for smaller
versions of the algorithms, with fewer round keys, it can require less memory to store all the
pre-expanded round keys in flash than it does to implement the key schedule.
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The encryption cost counts only the cycles required for encryption, i.e., it does
not include the cycles required for the generation or storage of expanded key in
SRAM. This approach makes sense for many high-speed applications, where a
large amount of data may need to be encrypted. We note that the key generation
for S or S requires about as many cycles as a single encryption.

Small code size is achieved in part by doing function calls for common opera-
tions such as n-bit XORs. There is overhead associated with each function call,
and so throughput is affected. Our low-flash implementations use this tech-
nique, but only within reason. Additional code-size savings are possible (up to
30 bytes for S and 50 bytes for S), but only by significantly reducing
throughput.

Finally, none of the results we report include any wrappers necessary for an
actual application to interface with the external world. In particular, we have
omitted the instructions and cycle counts associated with reading data in from
the ports, and reading key in from wherever it resides. We also do not count
any flash that may be required to store the key or plaintext.
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size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 S 384 64 168
S 424 44 110

48/72 S 430 108 187
S 532 66 100

48/96 S 442 108 187
S 562 69 104

64/96 S 530 168 205
S 556 104 114

64/128 S 404 176 217
S 596 108 118

96/96 S 544 312 249
S 454 168 123

96/144 S 444 324 260
S 576 174 127

128/128 S 446 544 333
S 388 256 139

128/192 S 582 552 335
S 568 272 143

128/256 S 458 576 353
S 458 288 147

Table 7.1: High-throughput (low-energy) software im-
plementations.
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size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 S 130 0 205
S 92 0 140

48/72 S 196 0 220
S 130 0 130

48/96 S 196 0 220
S 134 0 136

64/96 S 274 0 239
S 182 0 144

64/128 S 282 0 250
S 186 0 150

96/96 S 454 0 284
S 276 0 148

96/144 S 466 0 295
S 282 0 153

128/128 S 732 0 376
S 396 0 167

128/192 S 740 0 381
S 404 0 172

128/256 S 764 0 398
S 412 0 177

Table 7.2: Low-SRAM software implementations.
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size name flash SRAM enc. cost
(bytes) (bytes) (cycles/byte)

32/64 S 136 64 189
S 102 44 167

48/72 S 166 108 202
S 126 69 145

48/96 S 178 108 202
S 132 72 151

64/96 S 198 168 218
S 152 108 154

64/128 S 208 176 228
S 160 112 160

96/96 S 256 312 258
S 170 174 150

96/144 S 256 324 268
S 206 180 155

128/128 S 328 544 342
S 214 264 165

128/192 S 328 552 347
S 266 272 170

128/256 S 340 576 362
S 284 280 175

Table 7.3: Low-flash software implementations.
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A. S  S  64- P

Interoperability is an important issue: We can envision scenarios where many
constrained devices interact with a back-end server, and performance on that
machine becomes important. RFID is an example, where low-resource tags
communicate with a reader. Although a tag may only talk to a single reader,
the reader may be required to interact with a large number of tags over a short
time interval.

Although it was not our primary goal, S and S have exceptional per-
formance on 32- and 64-bit processors. For the remainder of this section, we
focus on 64-bit performance. Table A.1 reports the encryption cost for two

size name enc. cost SSE enc. cost
(cycles/byte) (cycles/byte)

64/96 S 27.3 4.9
S 9.6 2.3

64/128 S 28.7 5.2
S 10.1 2.4

128/128 S 21.6 7.5
S 5.7 2.6

128/192 S 21.6 7.7
S 5.9 2.7

128/256 S 23.0 8.0
S 6.1 2.8

Table A.1: Encryption costs on a 64-bit processor.
The first encryption cost column is for the reference
code given below, where a single plaintext is en-
crypted using precomputed round keys. The SSE
encryption costs are for multiple encryptions done
in parallel.
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different C implementations on a single core of a 2.67 GHz Intel Xeon E5640
processor: a straightforward reference implementation with nothing done in
parallel, and a high-speed SSE implementation. Both use a pre-expanded key,
and so incur no cost for the key expansion.

The SSE versions of S64 and S128 carried out sixteen and eight parallel
encryptions, respectively. The SSE versions of S64 and S128 were bit-
sliced, each performing 128 parallel encryptions. The cost to transpose data for
Swas not included in the costs reported in Table A.1.

In each case, our code was compiled using GCC version 4.5.1 with either the
-O3 flag set or the -O1 flag set, whichever resulted in faster code (except for the
SSE versions of S128, which performed significantly better when compiled
with GCC version 4.1.2 using the -O1 flag).

For S128/128 and S128/128, we used the C code shown below as the
basis of our reference implementations. The plaintext and ciphertext are stored
in 2-dimensional arrays pt[ ] and ct[ ] of type u64. The (precomputed) round
keys, also of type u64, are stored in the array k[ ]. The _lrotl function is
provided by x86intrin.h, which needs to be included.

#define LCS _lrotl //left circular shift

#define u64 unsigned long long

#define f(x) ((LCS(x,1) & LCS(x,8)) ^ LCS(x,2))

#define R2(x,y,k1,k2) (y^=f(x), y^=k1, x^=f(y), x^=k2)

void Simon128Encrypt(u64 pt[], u64 ct[], u64 k[])

{

u64 i;

ct[0]=pt[0]; ct[1]=pt[1];

for(i=0; i<68; i+=2) R2(ct[1], ct[0], k[i], k[i+1]);

}

S128/128 encryption
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#define LCS _lrotl //left circular shift

#define RCS _lrotr //right circular shift

#define u64 unsigned long long

#define R(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)

void Speck128Encrypt(u64 pt[], u64 ct[], u64 k[])

{

u64 i;

ct[0]=pt[0]; ct[1]=pt[1];

for(i=0; i<32; i++) R(ct[1], ct[0], k[i]);

}

S128/128 encryption

S128/128 encryption can be coded with on-the-fly round key generation in
a very concise manner. As expected, this reduces encryption efficiency. The C
routine below, in which we denote the key by K=(K[1], K[0]), encrypts at a
rate of 9.3 cycles/byte (or 8.0 cycles/byte if fully unrolled).

#define LCS _lrotl //left circular shift

#define RCS _lrotr //right circular shift

#define u64 unsigned long long

#define R(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)

void Speck128ExpandKeyAndEncrypt(u64 pt[], u64 ct[], u64 K[])

{

u64 i,B=K[1],A=K[0];

ct[0]=pt[0]; ct[1]=pt[1];

for(i=0; i<32; i++){R(ct[1], ct[0], A); R(B, A, i);}

}

S128/128 encryption and key expansion
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For comparison, we implemented the lightweight block cipher TEA on the same
processor (using the C code found in [WN95]). TEA has a trivial key schedule,
so there is no additional cost associated with key expansion. Nevertheless, the
resulting implementation has an encryption cost of 51.7 cycles/byte.
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B. S T V

Simon32/64
Key: 1918 1110 0908 0100
Plaintext: 6565 6877
Ciphertext: c69b e9bb

Simon48/72
Key: 121110 0a0908 020100
Plaintext: 612067 6e696c
Ciphertext: dae5ac 292cac

Simon48/96
Key: 1a1918 121110 0a0908 020100
Plaintext: 726963 20646e
Ciphertext: 6e06a5 acf156

Simon64/96
Key: 13121110 0b0a0908 03020100
Plaintext: 6f722067 6e696c63
Ciphertext: 5ca2e27f 111a8fc8

Simon64/128
Key: 1b1a1918 13121110 0b0a0908 03020100
Plaintext: 656b696c 20646e75
Ciphertext: 44c8fc20 b9dfa07a

Simon96/96
Key: 0d0c0b0a0908 050403020100
Plaintext: 2072616c6c69 702065687420
Ciphertext: 602807a462b4 69063d8ff082

Simon96/144
Key: 151413121110 0d0c0b0a0908 050403020100
Plaintext: 746168742074 73756420666f
Ciphertext: ecad1c6c451e 3f59c5db1ae9

Simon128/128
Key: 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 6373656420737265 6c6c657661727420
Ciphertext: 49681b1e1e54fe3f 65aa832af84e0bbc

Simon128/192
Key: 1716151413121110 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 206572656874206e 6568772065626972
Ciphertext: c4ac61effcdc0d4f 6c9c8d6e2597b85b

Simon128/256
Key: 1f1e1d1c1b1a1918 1716151413121110 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 74206e69206d6f6f 6d69732061207369
Ciphertext: 8d2b5579afc8a3a0 3bf72a87efe7b868
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C. S T V

Speck32/64
Key: 1918 1110 0908 0100
Plaintext: 6574 694c
Ciphertext: a868 42f2

Speck48/72
Key: 121110 0a0908 020100
Plaintext: 20796c 6c6172
Ciphertext: c049a5 385adc

Speck48/96
Key: 1a1918 121110 0a0908 020100
Plaintext: 6d2073 696874
Ciphertext: 735e10 b6445d

Speck64/96
Key: 13121110 0b0a0908 03020100
Plaintext: 74614620 736e6165
Ciphertext: 9f7952ec 4175946c

Speck64/128
Key: 1b1a1918 13121110 0b0a0908 03020100
Plaintext: 3b726574 7475432d
Ciphertext: 8c6fa548 454e028b

Speck96/96
Key: 0d0c0b0a0908 050403020100
Plaintext: 65776f68202c 656761737520
Ciphertext: 9e4d09ab7178 62bdde8f79aa

Speck96/144
Key: 151413121110 0d0c0b0a0908 050403020100
Plaintext: 656d6974206e 69202c726576
Ciphertext: 2bf31072228a 7ae440252ee6

Speck128/128
Key: 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 6c61766975716520 7469206564616d20
Ciphertext: a65d985179783265 7860fedf5c570d18

Speck128/192
Key: 1716151413121110 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 7261482066656968 43206f7420746e65
Ciphertext: 1be4cf3a13135566 f9bc185de03c1886

Speck128/256
Key: 1f1e1d1c1b1a1918 1716151413121110 0f0e0d0c0b0a0908 0706050403020100
Plaintext: 65736f6874206e49 202e72656e6f6f70
Ciphertext: 4109010405c0f53e 4eeeb48d9c188f43
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